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Abstract Numerical self-consistent field (SCF) calculations
in density functional theory (DFT) and the local spin-density
approximation (LSDA) were performed for the light atoms
H, Li, B, C, N, O and F, in order to investigate the effect of the
self-interaction correction (SIC) on the isotropic (or contact)
hyperfine parameter AISO. In contrast to the findings for cer-
tain 3d-metals and compounds, results for light-atom SI-cor-
rected AISO present no improvement over the LSDA values.
We show that relatively modest changes to the correlation
potential can lead to significant improvement of densities
near the nucleus and the related AISO, suggesting a direction
for future improvements in DFT functionals.

Introduction

Density functional theory (DFT) and the local spin-density
approximation (LSDA) have had considerable success in
recent years in calculating properties of magnetic molecules
and solids. However, one property, which is particularly sen-
sitive to the shape of the wave function in the core region of
the atoms, has posed a challenge not yet resolved: the iso-
tropic (or contact) hyperfine interaction parameter AISO [1].
This parameter, which depends on the electronic spin-density
at the nucleus, was obtained for first-row atoms in molecular
calculations employing the LSDA with rather poor results
[2–5]. Inclusion of gradient corrections (GGA) to the LSDA
has done little to improve the situation, particularly since the
different forms of the GGA correction potentials give quite
different results. Improved results were obtained by including
in the corrections to the LSDA a fraction of the Hartree–Fock
potential (HF) [4]; however, this procedure takes us out of the
framework of DFT. With such an empirical mixture of two
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quite different theories, one has little hope of learning how to
make fundamental improvements in theory. In any case, ef-
forts to improve exchange-correlation potentials were largely
directed toward binding energies and bond lengths, and not
local wavefunction properties.

The core states of an atom are localized, and thus are
very susceptible to an intrinsic error of DFT, which is the
interaction of an electron with itself, or self-interaction. This
spurious effect arises from the incomplete cancellation of the
self-interaction contained in the Coulomb repulsion potential
by the exchange-correlation potential; in other words, the
electron feels the effect of itself in the self-consistent field.
A self-interaction correction (SIC) was proposed by Perdew
and Zunger and applied to binding energies of atoms with
success, bringing theoretical and experimental values to a
better agreement [6]. However, application to calculations of
the core electrons contact hyperfine field of the metals Fe,
Co and Ni had little success in improving the theoretical val-
ues [7]. More recently, a new formulation of SIC by Lundin
and Eriksson was proposed [8], which is conceptually more
satisfying than the original one, since it is explicitly entirely
SIC-free by construction, which was not the case with the ear-
lier proposition. With a firm theoretical foundation within the
DFT formalism, and successful applications to molecules and
solids (correction of the well-known LDA band-gap problem,
for example) one may hope to find further improvements in
the treatment of other more subtle properties. Application to
calculations of the contact hyperfine fields of solid ionic Fe
compounds, as well as metallic Fe, Co and Ni, showed sig-
nificant improvement in the results, as compared with LSDA
[9]; however, comparison with experiment is impaired since
the orbital component of the hyperfine field was obtained by
an empirical rule. It thus becomes highly interesting to see
how well the model performs in prediction of hyperfine fields
of lighter atoms.

We have recently been engaged in calculations of AISO for
small molecules containing H, C, N and O, as well as AISO for
N in large biological molecules [10]. Confronted by the diffi-
culty posed by the use of LSDA in calculating this property,
we decided to test the efficacy of SIC in obtaining AISO for the
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Table 1 Atomic orbital contributions to �ρs(0) (in a−3
o )

H Li B C N O F

LSDA 1s 0.302 0.004 −0.090 −0.279 −0.573 −0.506 −0.313
2s – 0.225 0.084 0.268 0.561 0.492 0.299
Total 0.302 0.229 −0.006 −0.011 −0.012 −0.014 −0.014

SICa 1s 0.315 0.490 −0.268 −0.664 −1.212 −0.766 −0.431
2s – 0.345 0.195 0.486 0.874 0.696 0.399
Total 0.315 0.835 −0.073 −0.178 −0.338 −0.070 −0.032

SICb Total 0.315 0.736 −0.117 −0.271 −0.488 −0.174 −0.088
aNon-orthogonalized orbitals
bOrthogonalized orbitals

light atoms H, Li, B, C, N, O and F. In particular, for the case
of the first-row atoms, it is well known that the LSDA gives
poor results due to the unsatisfactory description of the 1s
core spin-polarization by the 2p electrons. It was hoped that
using SIC would correct for this deficiency to some extent.
Results obtained with and without SIC were then assessed
by comparison with available experimental data. Finally, we
carried out an estimate of the effects of correlation on AISO,
using an empirical scaling function.

Atomic calculations and SIC

All atomic calculations were performed on a numerical grid
of 300 points, and thus the radial eigenfunctions R(r) ob-
tained are numerical. The Kohn–Sham equations of LSDA
are solved self consistently (in Hartree atomic units):[
−∇2/2 +

∫
ρ(r′)/|r − r′|d3r′ + V σ

xc(r) + VN(r)
]

φσ
i (r)

= εσ
i φσ

i (r) (1)

In Eq. (1),VN(r) is the external (nuclear) potential, the second
term is the Hartree (effective Coulomb) potential and the elec-
tronic spin-density ρσ (r) of spin σ is given by the sum over
the atomic spin-orbitals φσ

i (r) with occupation nσ
i and eigen-

values εσ
i :

ρσ (r) =
∑

i

nσ
i |φσ

i (r)|2 ≡
∑

i

nσ
i ρσ

i (r). (2)

The total ρ(r) is the sum of ρσ (r) for both spins, and the
spin density �ρs(r) is defined as [ρ↑(r)−ρ↓(r)], with ↑ (↓)
pertaining to ms = +1/2(−1/2). The exchange and correla-
tion potential V σ

xc of Eq. (1) is decomposed in the usual man-
ner as the sum of the Kohn–Sham exchange potential V σ

x and
the correlation potential Vc. The local exchange-correlation
potential V σ

xc(r) employed here was that of Vosko, Wilk and
Nusair (VWN) [11], which was obtained by fitting Ceperley
and Alder’s Green’s function Monte-Carlo data [12].

In the Lundin–Eriksson SIC (LE-SIC) method, one uses
a different potential for each φσ

i (r), constructed by subtract-
ing the density pertaining to this orbital, ρσ

i (r), from the total
density:

V iσ
SIC = VN + VH(ρ − ρσ

i ) + Vxc(ρ
σ − ρσ

i , ρσ ′
), (3)

where VH is the Hartree-Coulomb potential.

The model described here is within the nonrelativistic
spin-polarized framework, which is a subset of the more
general spin- and orbital-polarized methodology. In the gen-
eral case, one allows different radial wavefunctions for each
ml and ms , which can produce a nonspherical charge and
spin density. Desclaux et al. [13] have shown that, in spin-
and orbital-polarized Hartree–Fock (SOPHF) calculations,
the additional freedom of orbital polarization has only minor
effects on the s-densities responsible for the isotropic hyper-
fine interaction. For example, SOPHF results for the 5dn ions
differ from spin-polarized results by only 0.2–0.5%.

After obtaining the self-consistent solutions, the isotropic
hyperfine parameter may be calculated as:

AISO = (8π/3)geβegNβN�ρs(0), (4)

where ge and gN are the electron and nuclear gyromagnetic
ratios, respectively, βe is the Bohr magneton, βN the nuclear
magneton and �ρs(0) is the electron spin-density at the nu-
cleus; in the non-relativistic approximation only s electrons
penetrate the nucleus.

Results and discussion

In Table 1 are given the self-consistent values of �ρs(0) for
the LSDA calculations with and without SIC, for the atoms
H, Li, B, C, N, O and F. The individual contributions of the
1s and 2s orbitals are shown. In the case of SIC, the 1s and 2s
orbitals are non-orthogonal and the density may be projected
in an invariant manner as

ρ =
∑
ij

φiS
−1
ij φj

√
ninj (5)

consistent with the Pauli exclusion principle; here Sij is the
overlap matrix element between orbitals i and j . This can be
described as resulting from mutual orthogonalization of the
orbitals within a single determinant wavefunction; however,
the result given in Eq. (5) is independent of any particular
choice of orthogonalization scheme [14]. Due to spin- and
angular momentum-orthogonality the only nontrivial
elements of S which enter in the present case are the 1s–
2s overlaps of a given spin. The occupation-number factor is
included in Eq. (5) to remind the reader that only occupied
states enter into the calculation of ρ. In the Table, results
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Table 2 Theoretical and experimental values of AISO (in MHz) for light atoms

1 H 7 Li 11 B 13 C 14 N 17 O 19 F

LSDAa 1351 397 −8.84 −11.83 −3.93 +8.56 −59.73
SICa 1409 1279 −168.5 −304.8 −157.5 +105.3 −370.0
DFTb – – −32.37 1.45 15.70 −17.77 –
DFTc – – – 12.66 23.29 −43.20 –
DFTd – – 17.5 24.6 10.3 −28.7 243.6
LSDAe 1296 390 12.6 23.6 16.4 −26.9 59.3
CCSDf – – 10.25 21.42 11.00 −33.16g 302.87
Exp. 1420h 401.8h 11.6i 21.4k 10.45l 34.5g,m 301.7m

18.7j 22.5i

a This work. gN(1H) = 5.58556, gN(7Li) = 2.17091, gN(11B) = 1.79233, gN(13C) = 1.4048, gN(14N) = 0.40375, gN(17O) = −0.75748,
gN(19F) = 5.2576. All values of gN from Ref. [15]
b From Ref. [3]. Gaussian basis, gradient-corrected functionals by Perdew, and Perdew and Wang [16]
c From Ref. [3], different Gaussian basis
dFrom Ref. [4]. Gaussian basis, mixed exchange-correlation functional DFT/Hartree–Fock (B3LYP)
e Employing Vc multiplied by factor F, with a = 1, b = 1.5, see Eqn. (6)
f From Ref. [17], Coupled-Cluster method
g The apparent sign discrepancy here is merely due to the negative nuclear gN factor of 17 O; experimental value lacks determination of the sign
(see text)
h From Ref. [15] and references therein
i From Ref. [18]
j From Ref. [19]
k From Ref. [20]
l From Ref. [21]
m From Ref. [22]

with SIC are given before and after the orthogonalization;
after this procedure, however, one cannot speak of 1s and 2s
individual contributions anymore, therefore only the total is
given.

The electron spin density at the nucleus for H and Li is
large and positive and, in the case of Li, due almost entirely to
the valence 2s. In the case of the series B–F, the total �ρs(0)
is much smaller, since it results from a delicate balance of
the negative core (1s) contribution and the positive 2s. In
this series, both the 1s and 2s orbitals are entirely filled, and
the spin density results from the polarization by the unpaired
electrons in the 2p orbital. The total positive spin (or spin
up) of the 2p electrons attracts electrons of equal spin, since
the exchange interaction does not exist between electrons of
opposite spin. Since the 1s electrons are nearer to the core
than the 2p, the latter will attract the 1s↑ electrons and thus
a larger 1s↓ density will remain in the core region, result-
ing in negative total 1s contribution to �ρs(0). Conversely,
the 2s electrons give a positive contribution since much of
the 2s electron density lies outside the 2p. Observation of the
LSDA results in Table 1 reveals that the two contributions
of opposite sign almost cancel each other, resulting in very
small negative values for �ρs(0). Inclusion of SIC increases
the magnitudes of all contributions in all atoms; however,
in the B–F series the magnitude of the 1s spin density is
substantially increased relative to 2s, thus resulting in total
negative �ρs(0) of larger magnitudes. The effect of orthog-
onalization is not negligible, apparently contrary to the case
of heavy atoms [8,9], and increases the magnitudes of the
negative �ρs(0) further.

In Table 2, the theoretical values of AISO in MHz, as well
as other calculated and experimental values obtained from
the literature are given. It is seen that the LSDA gives quite
accurate values for H and Li, where no indirect effect of spin
polarization by 2p electrons is involved. However, values for
the B-F series have opposite signs to the experimental mea-
surements. Inclusion of SIC brings the value for H closer to
experiment; however, the value for Li is substantially over-
estimated, as are the magnitudes of the values for the B-F
series, which become even more negative.

The third and fourth rows in Table 2 are results of reported
DFT calculations, both employing the same GGA correc-
tion, but with different Gaussian basis sets [3]. It is seen that
the choice of basis has a significant influence on the cal-
culated AISO. Since our atomic orbitals are numerical, our
results are free of spurious basis set effects. In the fifth row,
reported values obtained with a large Gaussian basis and
a mixed DFT/Hartree–Fock exchange-correlation functional
(B3LYP) [4] are given. Results are fairly good compared to
experiment; however, the degree of mixture is empirical and
this approach, as mentioned in the Introduction, does not
provide any basis for further improvements in basic DF the-
ory. As an example of highly accurate atomic calculations of
AISO, we include in row 7 of Table 2 the reported results
obtained with the Coupled-Cluster method (CCSD) [17].
Comparison with experiment is very satisfactory; however,
extension to polyatomic and solid-state systems is difficult.

It must be mentioned that experimental results are often
obtained for atoms trapped in a matrix, and thus some residual
matrix effects may be present.
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To understand better the effect of SIC on �ρs(0), we have
plotted on Fig. 1 (a) and (b) the spin densities of the orbitals
1s, 2s and 2p of nitrogen. We may see that the spin-polar-
ized region of 1s and 2s is very close to the nucleus, and is
enhanced strongly by the use of SIC (Fig. 1b). This increase
in polarization may be understood by observing the increase
of the 2p spin density near the core region, brought forth by
SIC.

In conclusion, we have tested the effects of inclusion
of LE-SIC in LSDA calculations of the isotopic hyperfine
parameter AISO. We have found that this correction used to-
gether with the local exchange-correlation functional VWN
increases substantially the spin polarization of the 1s and 2s
electrons at the nuclear site. In the case of the B-F series,
the increase in the magnitude of the 1s polarization is higher,
and thus calculated AISO values become more negative. Over-
all, except for H the use of LE-SIC results in calculated
values that are further away from experiment, compared to
conventional LSDA.

Effect of correlation on ∆ρs(0)

The failure of the LSDA to give accurate values of�ρs(0)was
generally attributed to the local exchange potential, which
presumably does not correctly describe the spin polarization
of the core (and valence) electrons. However, little attention
was given to the effects of the correlation potential on �ρs(0),
perhaps because Vc and its corresponding energy Ec are typ-
ically of the order of 10% of the exchange potential Vx and
energy Ex . Parametrization of LSDA correlation functionals
is done to fit theoretical data (obtained via Quantum Monte
Carlo for the homogeneous electron gas) for the valence-
density region of the atoms, which is relevant to correctly
describe molecular or metallic bonds, bond lengths and cohe-
sion energies. The very high electron densities present at or
near the atomic nucleus are harder to treat due to inadequacies
of LDA itself; for example, the results of Ceperley and Alder
[12] fitted to obtain the VWN potential are more accurate for
low densities [11].

As described in Sect. 3, the LE-SIC corrections tend to
increase the electron density in the core region, and thus also
�ρs(0). As this happens, the correlation among the electrons
will increase in this region, and an adequate correlation poten-
tial Vc would correctly compensate for this change. However,
unfortunately, investigations of the behavior of Vc of LSDA
and several GGA approaches for the He atom show large dis-
crepancies, when compared to exact values, especially at the
core region [23]. The same is true for Ne [24,25]. The VWN
Vc is found to be too attractive (higher negative values) in
the core region, as compared to the exact Vc; nevertheless, its
behavior near the nucleus of He compares much better with
the exact Vc than all the other GGA potentials tested, pos-
sibly because in its derivation, a constraint was imposed for
approximately correct behavior at high densities [26]. As an
indication of the complexity of analysis in this region, we note
that the error in exchange, Vx , counterbalances the error in Vc

Fig. 1 Spin densities of nitrogen orbitals 1s, 2s and 2p along radial
coordinate. a LSDA. b LSDA+SIC

to a certain extent. An extensive discussion of the accuracy
of GGA functionals, divergence of the related potentials, and
their behavior with respect to various asymptotic forms and
boundary conditions is given in Ref. [24].

The principal aim of the LE–SIC approach is to remove
the spurious self-interaction effect from the exchange-
potential Vx . However, the density ρσ −ρσ

i is also carried over
into Vc (Eq. (3)), resulting in some modifications as compared
to standard LSDA. Therefore, a consistent formulation of the
SI-corrected LSDA theory would have to take into account
these changes, perhaps through a re-parametrization of Vc.

Here we make no attempt to propose a new correlation
potential; instead, we wish to comment on the effects that
changes on Vc might bring to �ρs(0). To do this, we have
multiplied the Vc potential in the LSDA calculations by a
factor:

FVc = (a − b/rs)Vc, (6)

where rs has the usual definition rs = [3/(4πρ)]1/3. We have
experimented with several of the popular versions of Vc; for
the sake of brevity and clarity, we report here only on results
obtained using the VWN parametrization which is fitted to
the Gellman–Bruckner asymptotic form at high density [11].
In Eq. (6), the first parameter “a” will scale Vc linearly, and
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the second term will decrease (for b > 0) the magnitude of Vc

by an amount proportional to the electron density, vanishing
in the low-density region where Vc is believed to be accurate.

In Fig. 2 (a) and (b), we have plotted the effect of F on the
LSDA values of �ρs(0) for Li and N. It is seen from these
figures that if b = 0 (solid lines), �ρs(0) always increases
as Vc is increased. When a = 1 (i.e., the first term in Eq. (6)
is just Vc), for Li an increase in “b” will decrease �ρs(0);
however, for N the opposite occurs. The reason for this is
that in N the second term in Eq. (6) will be more important
for the electrons with higher density (1s) which contribute
with negative values to �ρs(0) (see Table 1), and thus as “b”
increases the total �ρs(0) will tend towards positive values.
Results for B, C, O and F are analogous to those for N.

As an example of the sizable effect on AISO induced by
modest changes in Vc, we show in row 6 of Table 2 the results
obtained for AISO with LSDA, using the modified correlation
potential FVc, for a given “approximately optimized” pair
(a, b) in Eq. (6). It is seen that these changes in the corre-
lation potential may in fact bring the values of the contact
parameter much closer to experiment. In particular, the sign
of AISO, which was opposite to the experimental values in
the series B-F, is now corrected. The sign of AISO in general
may not be determined in an EPR measurement, or some-
times it may be determined only if certain assumptions are
made. For this reason, the experimental values in the last
row of Table 2 are given without a sign. However, the theo-
retical values of AISO obtained for the B–F series, utilizing
several highly-accurate, highly-correlated ab initio methods,
are positive for all these atoms. The only exception is 17O,
for which a negative AISO is obtained, but this is merely due
to the negative sign of the nuclear factor gN in Eq. (4) (for a
compilation of values of the isotropic hyperfine parameters
obtained with different methods, see Ref. [17]). Therefore,
one may safely assume, as has been done by other authors,
that the signs obtained with these highly precise methods
(such as the Coupled-Cluster method, from which results are
given in Table 2) are correct. As for H and Li, since only the
direct contribution is expected to have a significant value, the
sign is positive for obvious reasons.

Conclusions

We have carried out numerical LSDA atomic calculations
for the light atoms H, Li, B, C, N, O and F, with and without
the inclusion of the LE–SIC, to obtain the isotropic hyper-
fine parameter AISO. With the exception of H, all AISO values
have their magnitudes increased considerably, such that com-
parison with experimental values becomes worse than values
obtained with LSDA. It is suggested that a poor description of
electron correlation in the high density region near the nuclei
may play a role, and a simple empirical factor multiplying
Vc is employed to illustrate the effect of Vc on �ρs(0). The
results indicate that further work is needed in obtaining corre-
lation functionals adequate for regions of very high electron
densities. In fact, it was shown that for He, Be and Ne the local

Fig. 2 Values of the isotropic hyperfine parameter AISO for Li and N,
plotted against parameters “a” (or “b”) of Eq. (6). Horizontal scale gives
values of “a” for b = 0 (—), or values of “b” for a = 1 (- - - -)

VWN correlation potential is considerably more negative in
the core region than the exact Vc for these atoms [23–25].
Correction for the self-interaction of electrons is a physically
well-founded concept – in fact, it was used by Hartree for the
Coulomb interaction in his historic self-consistent method
for atoms. It is possible that the use of correlation functionals
more adequate for the high electron densities in the vicinity of
the nuclei will lead to improved DFT results for the isotropic
hyperfine parameter. Furthermore, the modified density used
in LE-SIC suggests a need for re-parametrization of current
Vc formulations. With a simple scaling approach, we demon-
strated that modest changes in Vc have an enormous impact
in the calculated values of AISO, capable of bringing them
closer to experiment.
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